Search results for "Hard spheres"

showing 10 items of 66 documents

Description of hard-sphere crystals and crystal-fluid interfaces: a comparison between density functional approaches and a phase-field crystal model.

2012

In materials science the phase field crystal approach has become popular to model crystallization processes. Phase field crystal models are in essence Landau-Ginzburg-type models, which should be derivable from the underlying microscopic description of the system in question. We present a study on classical density functional theory in three stages of approximation leading to a specific phase field crystal model, and we discuss the limits of applicability of the models that result from these approximations. As a test system we have chosen the three--dimensional suspension of monodisperse hard spheres. The levels of density functional theory that we discuss are fundamental measure theory, a …

: Physics [G04] [Physical chemical mathematical & earth Sciences]FOS: Physical sciencesHard spheresCondensed Matter - Soft Condensed Matterlaw.inventionCrystal: Physique [G04] [Physique chimie mathématiques & sciences de la terre]lawPhase (matter)Crystal modelVacancy defectSoft Condensed Matter (cond-mat.soft)Density functional theoryStatistical physicsCrystallizationFree parameterMathematicsPhysical review. E, Statistical, nonlinear, and soft matter physics
researchProduct

Monte Carlo simulations of the solid-liquid transition in hard spheres and colloid-polymer mixtures

2010

Monte Carlo simulations at constant pressure are performed to study coexistence and interfacial properties of the liquid-solid transition in hard spheres and in colloid-polymer mixtures. The latter system is described as a one-component Asakura-Oosawa (AO) model where the polymer's degrees of freedom are incorporated via an attractive part in the effective potential for the colloid-colloid interactions. For the considered AO model, the polymer reservoir packing fraction is eta_p^r=0.1 and the colloid-polymer size ratio is q=sigma_p/\sigma=0.15 (with sigma_p and sigma the diameter of polymers and colloids, respectively). Inhomogeneous solid-liquid systems are prepared by placing the solid fc…

ANISOTROPIC SURFACE-TENSIONMaterials scienceMonte Carlo methodDegrees of freedom (physics and chemistry)General Physics and AstronomyThermodynamicsCondensed Matter - Soft Condensed MatterCAPILLARY WAVESAtomic packing factorCOMPUTER-SIMULATIONVAPOR INTERFACE3-DIMENSIONAL ISING-MODELColloidsymbols.namesakePhase (matter)Physical and Theoretical ChemistryCOEXISTING PHASESchemistry.chemical_classificationCondensed Matter - Materials ScienceINTERFACIAL FREE-ENERGYPROFILESHard spheresPolymerCondensed Matter::Soft Condensed MatterchemistryCRYSTAL-MELT INTERFACESBoltzmann constantsymbolsCRYSTALLIZATIONThe Journal of Chemical Physics
researchProduct

Electrical resistivity of amorphous simple metals at moderately low temperatures

1999

Abstract The dependence of electrical resistivity ρ ( T ) on temperature T in a region of moderate temperatures is considered for amorphous simple metals. It is shown within the Faber–Ziman theory that the ratio [ ρ ( T )− ρ (0)]/ T 2 has a maximum in the temperature region 10 K⩽ T ⩽100 K The theory is illustrated by numerical calculations performed for hard-sphere models of amorphous Mg and Zn.

Amorphous metalMaterials scienceCondensed matter physicsMagnesiumchemistry.chemical_elementHard spheresCondensed Matter PhysicsRotonElectronic Optical and Magnetic MaterialsAmorphous solidTransition metalchemistryElectrical resistivity and conductivityElectrical and Electronic EngineeringElectron scatteringPhysica B: Condensed Matter
researchProduct

29Si NMR and Small-Angle X-ray Scattering Studies of the Effect of Alkaline Ions (Li+, Na+, and K+) in Silico-Alkaline Sols

1999

Alkali−silica reactions (ASR) which occur in concrete can be simulated in laboratory by destabilization of silico-alkaline aqueous solutions by addition of calcium ions. The relevant features of the reaction depend on the nature of alkaline ions (Li+, Na+, or K+) and on the silica/alkaline ratios which fix the distribution of the molecular species in the precursor solution. 29Si NMR spectroscopy and small-angle X-ray scattering (SAXS) techniques were used to study the structure and size distribution of molecular and colloidal species in sols with different silica/alkaline molar ratio and several types of alkaline ions. Experimental SAXS curves were simulated using a simple structural model …

Aqueous solutionSmall-angle X-ray scatteringInorganic chemistryHard spheresNuclear magnetic resonance spectroscopySurfaces Coatings and FilmsIonchemistry.chemical_compoundColloidchemistryMaterials ChemistryMoleculeHydroxidePhysical and Theoretical ChemistryThe Journal of Physical Chemistry B
researchProduct

Computer simulation studies of finite-size broadening of solid–liquid interfaces: from hard spheres to nickel

2009

Using Molecular Dynamics (MD) and Monte Carlo (MC) simulations interfacial properties of crystal-fluid interfaces are investigated for the hard sphere system and the one-component metallic system Ni (the latter modeled by a potential of the embedded atom type). Different local order parameters are considered to obtain order parameter profiles for systems where the crystal phase is in coexistence with the fluid phase, separated by interfaces with (100) orientation of the crystal. From these profiles, the mean-squared interfacial width w^2 is extracted as a function of system size. We rationalize the prediction of capillary wave theory that w^2 diverges logarithmically with the lateral size o…

Capillary waveMaterials scienceMonte Carlo methodFOS: Physical scienceschemistry.chemical_elementlocal order parametersPhysics::Fluid DynamicsCrystalMolecular dynamicsPhase (matter)Mesoscale and Nanoscale Physics (cond-mat.mes-hall)AtomGeneral Materials Sciencemelting transitionMonte Carlo simulationCondensed Matter - Materials ScienceCondensed Matter - Mesoscale and Nanoscale PhysicsCondensed matter physicscrystal growthMaterials Science (cond-mat.mtrl-sci)Hard spheresCondensed Matter Physicscapillary wave theoryNickelmolecular dynamics simulationchemistryinterfacial stiffnessJournal of Physics: Condensed Matter
researchProduct

Dynamics of Colloidal Hard Spheres in Thin Aqueous Suspension Layers—Particle Tracking by Digital Image Processing and Brownian Dynamics Computer Sim…

1993

Abstract A new experimentally simple technique is introduced for studying dynamical properties of hard sphere colloids in thin aqueous suspension layers by light-microscopy observation supported by computer-aided digital image processing. The thickness of the layers of the colloidal samples confined between two smooth glass plates is accurately adjusted by monodisperse "spacer" spheres which are larger than the diffusing spheres. Tracking of single particles in concentrated phases is accomplished using fluorescence light microscopy where a few dyed particles are mixed with the undyed colloidal spheres of the same size. First results are presented for the self-diffusion coefficient—(i) in ve…

Chemistrybusiness.industryHard spheresTracking (particle physics)Molecular physicsSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsCondensed Matter::Soft Condensed MatterBiomaterialsColloid and Surface ChemistryOpticsDigital image processingVolume fractionBrownian dynamicsParticleSPHERESParticle sizebusinessJournal of Colloid and Interface Science
researchProduct

Perspective: The Asakura Oosawa model: A colloid prototype for bulk and interfacial phase behavior

2014

In many colloidal suspensions, the micrometer-sized particles behave like hard spheres, but when non-adsorbing polymers are added to the solution a depletion attraction (of entropic origin) is created. Since 60 years the Asakura-Oosawa model, which simply describes the polymers as ideal soft spheres, is an archetypical description for the statistical thermodynamics of such systems, accounting for many features of real colloid-polymer mixtures very well. While the fugacity of the polymers (which controls their concentration in the solution) plays a role like inverse temperature, the size ratio of polymer versus colloid radii acts as a control parameter to modify the phase diagram: when this …

ChromatographyChemistryTriple pointNucleationGeneral Physics and AstronomyHard spheresCritical point (mathematics)Condensed Matter::Soft Condensed MatterColloidChemical physicsPhase (matter)MetastabilityPhysical and Theoretical ChemistryPhase diagramThe Journal of Chemical Physics
researchProduct

Polyorganosiloxane nanoparticles as optical tracers

2007

Polyorganosiloxane microgels have been synthesized by polycondensation in a microemulsion of trimethoxysilanes. Highly crosslinked rather monodisperse particles of radius about 10 nm are obtained.

ColloidChemistryDispersityAnalytical chemistryNanoparticleConcentration effectMicroemulsionRadiusHard spheresLight scattering
researchProduct

The effect of the internal architecture of polymer micronetwork colloids on the dynamics in highly concentrated dispersions

2007

Motivated by the finding that colloidal dispersions of polymer micronetwork spheres with a cross-link density of 1:50 (inverse number of monomer units between crosslinks) show significant deviations from the dynamics of hard spheres in the colloid glass as seen by dynamic light scattering (DLS) (E. Bartsch, V. Frenz, H. Sillescu J. Non — Cryst. Solids 172–174 (1994), 88–97), we have undertaken a systematic study of the effect of the crosslink density on the dynamics at high concentrations. Long-time self-diffusion coefficients D S L and collective diffusion coefficients D c were measured for colloids with crosslink densities of 1:10, 1:20 and 1:50 by forced Rayleigh scattering (FRS) and the…

ColloidSelf-diffusionMaterials scienceDynamic light scatteringDiffusionThermodynamicsSPHERESHard spheresThermal diffusivityGlass transition
researchProduct

Investigation of Finite-Size Effects in the Determination of Interfacial Tensions

2014

The interfacial tension between coexisting phases of a material is an important parameter in the description of many phenomena such as crystallization, and even today its accurate measurement remains difficult. We have studied logarithmic finite-size corrections in the determination of the interfacial tension with large scale Monte Carlo simulations, and have identified several novel contributions which not only depend on the ensemble, but also on the type of the applied boundary conditions. We present results for the Lennard-Jones system and the Ising model, as well as for hard spheres, which are particularly challenging. In the future, these findings will contribute to the understanding a…

Computer scienceMonte Carlo methodNucleationHard spheresMechanicsColloidal crystallaw.inventionCondensed Matter::Soft Condensed MatterSurface tensionlawIsing modelLaplace pressureBoundary value problemClassical nucleation theoryCrystallization
researchProduct